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=PL lonisation energy loss

« Atomic ionisation leading to X-ray emission < energy loss of transmitted e-
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=P~L lonisation edge naming

Energy-dispersive X-ray spectroscopy (EDXS) Electron energy-loss spectroscopy (EELS)

L family of lines

M family of lines 4d

K family of lines
\

K Is

[ | Duncan Alexander EPFL. CCMX 2024: Analytical Electron Microscopy (EELS & EFTEM) 5




=P~L Contents

* |onisation energy loss
e Features of the EEL spectrum
* Electron energy-loss spectrometer and energy filter
 Low-loss EELS
Bulk plasmon
Multiple scattering, thickness measurement and deconvolution
* |onisation edge Core-loss analysis
Elemental detection and mapping
Elemental quantification
ELNES

References

[ | Duncan Alexander EPFL. CCMX 2024: Analytical Electron Microscopy (EELS & EFTEM)



=PiL Features of the EEL spectrum
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=PiL Features of the EEL spectrum

e Energy loss > 0 = Inelastic scattering
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=PiL Features of the EEL spectrum

e Energy loss > 0 = Inelastic scattering
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=PiL Features of the EEL spectrum

 Energyloss >0 =

Inelastic scattering

200

Counts

phonons; valence excitations - plasmons (bulk & surface);

S0+

45004

40004

35004

30004

25004

20004

15004

10004

5004

Slice0

ZLP

Inelastic

Mox A E ~ 2000

(bW

100000
95000
30000
85000
30000
75000
70000
65000
50000
55000

i

5

3 50000

o

45000

~ | 40000

Q 10 20 30 40 50 60 70
Energy-Loss f2V)

Low-loss spectrum 0-50 eV:

interband transitions

Duncan Alexander EPFL. CCMX 2024: Analytical Electron Microscopy (EELS & EFTEM)

100

35000

30000

25000

1 20000

15000

10000

5000

o

" Core-shell EELS 50-3000 eV
inner-shell ionization

Ine

/ |
oy I?U@V

/
/
“y

160

120

200 220 240 260 220 300 320 340 360 380 400 420 440 460
Energy Loss (eV)

10



=PiL Comparison with EDX spectrum

e EDX spectrum from fuel cell sample containing O, Cr, Mn, Fe, Co

e Spectrum of mostly well-defined peaks that e.g. can be fitted with Gaussians
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=PrL Electron energy-loss spectrometer
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=P~L Post-column spectrometer

e Post-column spectrometer most common type used for materials science/physics
* Forinstance: Gatan EEL spectrometer

e In-column energy filters (e.g. JEOL omega) also exist
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=P-L STEM-EELS spectrum imaging

e During STEM imaging, collect the forward-
scattered electrons in the spectrometer
entrance aperture

 Record 3D data cube with a spectrum for
each probe position (X, y)
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=P~L Energy-filtered TEM (EFTEM)

 Record TEM image(s) made from

Parallel

transmitted electrons having certain llumination (TEM
energy w w u
* |Images defined by energy-loss AE and pp—
energy window J .
Sample

Energy-selecting
slit inserted
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=PrL Zero-loss EFTEM

» Zero-loss filtering can be used to remove diffuse inelastic scattering in TEM
images of thick samples and in diffraction patterns

 Example — ODS reinforced steel, sample ~250 nm thick:
| Unfiltered bright—field TEM: Zero-loss TEM:

R

- i
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=P~L Energy-filtered TEM (EFTEM)

: < N e
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=P~L Energy-filtered TEM (EFTEM)

: < N e se—
 Record TEM image(s) made from / \ \\\\ P~~~
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No equivalent with EDXS!
EDXS mapping can only be done in STEM mode

e EFTEM spectrum imaging:
create 3D data-cube by recording image
series at consecutive energy losses
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=PrL Inelastic scattering angular range

* |nelastic scattering concentrated into much smaller angles than elastic scattering
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=P~L Low-loss EELS

 For AE ~1-50 eV: excitation of plasmons

* Volume/bulk plasmon: oscillation of valence electrons

Example low-loss: crystalline Si
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=P~L Low-loss EELS

 For AE ~1-50 eV: excitation of plasmons

* Volume/bulk plasmon: oscillation of valence electrons

Example low-loss: crystalline Si

[ | Duncan Alexander EPFL. CCMX 2024: Analytical Electron Microscopy (EELS & EFTEM)
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=PrL Multiple scattering

* As specimen thickness increases, have multiple scattering

* |nelastic scattering mean free path: 4

« From Poisson statistics: /A = In(I; /1)

o t/IA=0.16

Spectrum
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=Pi-L Sample thickness measurement

* By calculating 4 the sample thickness t can be estimated

* Two routines in Digital Micrograph:
Kramers-Kronig sum rule
Log-ratio (absolute) — Bethe sum rule

 Accuracy ~ + 5-10 nm
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=PiL Spectral deconvolution

« Deconvolution can be used to retrieve the single-scattering distribution (SSD)

« Core-loss spectra: use Fourier-ratio deconvolution (r(\eds low-loss spectrum)

* Low-loss spectra: use Fourier-log deconvolution:

Spectrum

00000

00000

00000

22000
¥ 20000
18000 ' l
" (4

16000 2

00000 - |
-

12000

6000

4000

2000:

-5 o 5 25 30 35 40 45 50 S5

00000

177,

| It -1 B\
* Intensity of SSD: S(AE) = Tagmov? Im L(AE)] n 1+ (Q)

[ | Duncan Alexander EPFL. CCMX 2024: Analytical Electron Microscopy (EELS & EFTEM) 26



=PrL Multiple scattering: Mg sample
e Thick sample: t/ 4= 2.3

« Well-defined plasmon peak (free electron gas)

* Multiple orders of plasmon peak excitation
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=PrL Multiple scattering: Mg sample

e Thick sample: t/ 4= 2.3

« Well-defined plasmon peak (free electron gas)

* Multiple orders of plasmon peak excitation
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=P~L Complexity in the low-loss spectrum

* As well as bulk plasmons, can have surface plasmons, Cherenkov losses

) ¢ =
Ke.(c‘}’ld :7!‘, h.,c-
* Bulk plasmon region can also show single electron excitations
= Low-loss spectrum has features related to phase electronic structure

SrTiO3z low-loss:

40
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=P~L EXx. plasmon use: mapping elemental Si

* Use plasmon peak to map elemental Si nano-filaments in SiOx thin films

growth direction

MC-Si 20 nm pc-Si 20 nm pc-Si 20 nm

e Increasing H2 plasma = increased phase separation

Duncan Alexander EPFL. CCMX 2024: Analytical Electron Microscopy (EELS & EFTEM)
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=PiL lonisation edge / “core-loss” analysis

Multiple scattering:

Fourier-ratio deconvolution

High energy tail of lower energy/

losses: background removal
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=PiL lonisation edge / “core-loss” analysis

* Elemental ionisation edges superimposed on exponentially decaying
background (fit with power-law model)

e Signal intensity proportional to projected atomic concentration and elemental
partial ionisation scattering cross-section Ac

(Nd, Sm)NiO3 spectrum:
L N \f 59\

=)

\ D

p—

r
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=PiL lonisation edge / “core-loss” analysis

* Elemental ionisation edges superimposed on exponentially decaying
background (fit with power-law model)

e Signal intensity proportional to projected atomic concentration and elemental
partial ionisation scattering cross-section Ac

(Nd, Sm)NiO3 spectrum: N! /‘1
I o] I ] ]
-
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=PiL Elemental mapping — STEM-EELS

* Produce elemental maps by plotting integrated intensity in background-
subtracted energy-loss “windows” that select different ionisation edges

Example: NdNiOs / SmNiOs
superlattice on LaAlO3

La Nd Sm Ni Superlattice
[ | Duncan Alexander EPFL. CCMX 2024: Analytical Electron Microscopy (EELS & EFTEM) . 35
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=PrL Elemental mapping — EFTEM

e Example: EFTEM spectrum imaging of ODS reinforced steel

« Statistics obtained on spatial distribution of different particle types

+ Y-O particles: 6%, 16 nm

3 o Tim ¢ ' TlL’ i d
5 g A : :
Spectral fingerprints: ¢~ AmE ¥ « Ti-Cr-O particles: 4%, 33 nm
: le”T " e " Ti'L f

+ Y-Ti-O particles: 90%, 6 nm

Energy (eV) Energy (eV)

B Duncan Alexander EPFL. CCMX 2024: Analytical Electron Microscopy (EELS & EFTEM) Unifantowicz et al. J. Nuclear Mater. 422 131 (2012)



=PL Mapping: choose your elements wisely!
» First step: look at the EELS Atlas!

« \What are the energy losses of your elements?

e Which ionisation edges can you fit on one spectrum?

° ? : L
Do you have any overlaps" LA M /\; (La, Nd)NiO3 alloy
I 140
130 /: :1\\ Nl
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=PL Mapping: choose your elements wisely!

» First step: look at the EELS Atlas!

« \What are the energy losses of your elements?

e Which ionisation edges can you fit on one spectrum?

Do you have any overlaps?

I 1401
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=PL Mapping: choose your elements wisely!

» First step: look at the EELS Atlas!
« \What are the energy losses of your elements?
e Which ionisation edges can you fit on one spectrum?

* Do you have any overlaps? UL Ok LavO
/ 3

50

0
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=PL Mapping: choose your elements wisely!

» First step: look at the EELS Atlas!
« \What are the energy losses of your elements?
e Which ionisation edges can you fit on one spectrum?

Do you have any overlaps?

LaVOs3
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=PiL Elemental quantification Fdsa wfh

1 / R .
* Number of atoms per unit area N given by: N =— A Aq-; EX N
E‘? C‘( JP‘J‘ ’ F-D‘]O o C _ .
Leamn ™ fé"% didl 6QJ7"")
. I A
* Elemental percentages calculated using: N, _1,40,
N, I, Ao,

For good quantification, need knowledge and correct choice of
convergence semi-angle o and EEL spectrometer collection semi-angle

Example: BN measured in TEM mode (o =0) at 200 keV:
- =100 mrad: 47 at.% B /53 at.% N

— Consider characteristic angle of scattering 6, ~ AE/2E,

| Duncan Alexander EPFL. CCMX 2024: Analytical Electron Microscopy (EELS & EFTEM)
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=P~L Benefits of EELS vs EDXS

« No artefacts from fluorescence/stray emission
* Physics and chemistry: ELNES, plasmons (see later)

e Light elements: relatively strong intensity in EELS

= R | = Be K-edge ma
Example: I o
Be mapping
TR
/\\

@
8
8
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=P~L Benefits of EELS vs EDXS

« No artefacts from fluorescence/stray emission

* Physics and chemistry: ELNES, plasmons (see later)

e Light elements: relatively strong intensity in EELS

Example:
Be mapping

=TT e Be K-edge map

=|[¥
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'

. |
:

| ——
120 13

\ 8 ¥y F —
J:_‘ A\ ;\ - ‘_\ Matrix Me,s map
1. EELS: limited spectral range
— (S)TEM-EDXS: large spectral range (e.g. 0-20 keV)

2. EELS: need thin samples (ideally t/ A < 1)
— (S)TEM-EDXS much better than EELS for thick samples!
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=P~L Energy-loss near edge structure (ELNES)

* |onisation edge onsets show peaks related to unoccupied density of states (DOS)

* Fine structure comparable to X-ray absorption spectroscopy (XAS) data

Fermi
Energy

Kk e YEnergy loss

[ | Duncan Alexander EPFL. CCMX 2024: Analytical Electron Microscopy (EELS & EFTEM)

ZLP

44



=Pr~L Core-loss fine structure f; U ssiyple f

 Example: carbon K-edge
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=PiL Core-loss fine structure analysis

 (Cu nanocubes with oxide surface shell

STEM image Cu L-edge map O K-edge map

Analysis by Pau Torruella, LSME, EPFL

[ | Duncan Alexander EPFL. CCMX 2024: Analytical Electron Microscopy (EELS & EFTEM)
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=PiL Core-loss fine structure analysis

 (Cu nanocubes with oxide surface shell

 Compare experimental EELS fine structure to reference ra from database
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=PrL “White line” analysis

 ELNES peaks used to determine valence/oxidation state e.g. of transition metals

 Example: Co oxidation state
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=PrL “White line” analysis

 ELNES peaks used to determine valence/oxidation state e.g. of transition metals

 Example: Ni oxidation state during in-situ reduction of NiO

(a) 300 2°C/min (c)

1.0

Y ry = 4
MLLS — NiO ref

— Ni ref

1.0}
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A N - . - 4
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Jeangros et al. J. Mater. Sci. 48 2893 (2013)
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=Pi-L References

» Electron Energy-Loss Spectroscopy in the Electron Microscope
Ray. F. Egerton: https://link.springer.com/book/10.1007%2F9378-1-4419-9583-4

e EELS Atlas
Book: C.C. Ahn, O.L. Krivanek, Gatan; App: “EELS Atlas” by Gatan

* Electron-beam spectroscopy for nanophotonics
A. Polman et al., Nature Mater. 18, 1158 (2019):
https://doi.org/10.1038/s41563-019-0409-1

| Duncan Alexander EPFL. CCMX 2024: Analytical Electron Microscopy (EELS & EFTEM)

51



